Acquisition of Cell–Cell Fusion Activity by Amino Acid Substitutions in Spike Protein Determines the Infectivity of a Coronavirus in Cultured Cells
نویسندگان
چکیده
Coronavirus host and cell specificities are determined by specific interactions between the viral spike (S) protein and host cell receptor(s). Avian coronavirus infectious bronchitis (IBV) has been adapted to embryonated chicken eggs, primary chicken kidney (CK) cells, monkey kidney cell line Vero, and other human and animal cells. Here we report that acquisition of the cell-cell fusion activity by amino acid mutations in the S protein determines the infectivity of IBV in cultured cells. Expression of S protein derived from Vero- and CK-adapted strains showed efficient induction of membrane fusion. However, expression of S protein cloned from the third passage of IBV in chicken embryo (EP3) did not show apparent syncytia formation. By construction of chimeric S constructs and site-directed mutagenesis, a point mutation (L857-F) at amino acid position 857 in the heptad repeat 1 region of S protein was shown to be responsible for its acquisition of the cell-cell fusion activity. Furthermore, a G405-D point mutation in the S1 domain, which was acquired during further propagation of Vero-adapted IBV in Vero cells, could enhance the cell-cell fusion activity of the protein. Re-introduction of L857 back to the S gene of Vero-adapted IBV allowed recovery of variants that contain the introduced L857. However, compensatory mutations in S1 and some distant regions of S2 were required for restoration of the cell-cell fusion activity of S protein carrying L857 and for the infectivity of the recovered variants in cultured cells. This study demonstrates that acquisition of the cell-cell fusion activity in S protein determines the selection and/or adaptation of a coronavirus from chicken embryo to cultured cells of human and animal origins.
منابع مشابه
Amino acid substitutions within the leucine zipper domain of the murine coronavirus spike protein cause defects in oligomerization and the ability to induce cell-to-cell fusion.
The murine coronavirus spike (S) protein contains a leucine zipper domain which is highly conserved among coronaviruses. To assess the role of this leucine zipper domain in S-induced cell-to-cell fusion, the six heptadic leucine and isoleucine residues were replaced with alanine by site-directed mutagenesis. The mutant S proteins were analyzed for cell-to-cell membrane fusion activity as well a...
متن کاملEffect of Amino Acid Substitutions on Biological Activity of Antimicrobial Peptide: Design, Recombinant Production, and Biological Activity
Recently, antimicrobial peptides have been introduced as potent antibiotics with a wide rangeof antimicrobial activities. They have also exhibited other biological activities, including antiinflammatory,growth stimulating, and anti-cancer activities. In this study, an analog of MagaininII was designed and produced as a recombinant fusion protein. The designed sequence containe...
متن کاملAmmonium Chloride as a Potential Candidate for the Treatment and Controlling of Covid-19
Coronaviruses, pathogens with a zoonotic potential, are positive sense single-stranded RNA viruses. SARS Coronavirus-2, the cause of Covid-19 infection, is from the betacoronavirinea subfamily, which has close genomic and proteomic similarity to SARS Coronavirus-1(1). Given the genomic proximity of these two viruses, studies on SARS Coronavirus-1 can be used to control or detect SARS Coronaviru...
متن کاملEffect of Amino Acid Substitutions on Biological Activity of Antimicrobial Peptide: Design, Recombinant Production, and Biological Activity
Recently, antimicrobial peptides have been introduced as potent antibiotics with a wide rangeof antimicrobial activities. They have also exhibited other biological activities, including antiinflammatory,growth stimulating, and anti-cancer activities. In this study, an analog of MagaininII was designed and produced as a recombinant fusion protein. The designed sequence containe...
متن کاملThe evil role of spike in the coronaviruses: structure, function and evolution
1. Lu R, Zhao X, Li J, et al (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395:565–574 2. Zhou P, Tachedjian M, Wynne JW, et al (2016) Contraction of the type i IFN locus and unusual constitutive expression of IFN-α in bats. Proc Natl Acad Sci U S A 113:2696–2701 . doi: 10.1073/pnas.1518240113 3. Wu A, P...
متن کامل